Class of '07 Mechanical Engineering Open House

Welcome!

Open House Lab Tours?

Open House Lab Tours?

Isabel Recovery – Better Than Before

Reorganized spaces on the labdeck, 1st deck and 2nd deck

New labs, classrooms and project rooms

What is Mechanical Engineering?

Mechanics and Materials

Mechanics and Materials

Courses

- Statics
- Dynamics
- Strength of Materials
- Materials Science

Concepts

- How are loads transmitted through a structure?
- How do you design a structure that can withstand an earthquake?
- How do design attributes affect structural performance?
- How do you select materials that will not fail?

Mechanics and Materials Lab Facilities

Impact tester

Fatigue tester

Tensile tester

Mechanics and Materials Lab Facilities

High capacity test frame

Compression test fixtures

Mechanics and Materials

Lab Facilities

Slow strain rate corrosion machine

Corrosion chamber

Drop tower for dynamic testing

Mechanics and Materials Lab Facilities

Autoclave

Heat treatment furnaces

Mechanics and Materials Lab Facilities

Energy and Fluids

Energy and Fluids

Courses

- EngineeringThermodynamics
- AppliedThermodynamics
- Fluid Mechanics
- Heat Transfer

Concepts

- How do thermodynamic principles govern the world we live in?
- How do you design a propulsion system?
- Why is ship performance affected by hull design?
- How do you design a cooling system?

Gas Turbine Engine

Single Cylinder Spark Ignition Engine with Variable Compression Ratio

Small Engine Dynamometer

Subcritical reactor

Neutron generator

Water Channels

Fluid Mechanics
Instrumentation
Hot-wire Anemometers

Fluid Mechanics Instrumentation

Laser-Doppler Velocimeter

Particle Image Velocimeter

Flow visualization and analysis software

Design

Design

Courses

- Intro to Mechanical Engineering
- Experimentation
- Intro to Design
- Computer AidedDesign

Concepts

- What skills are required in a design engineer?
- How do you adequately test a design?
- How do you design a gear train?
- What software tools are available to the design engineer?

Design Lab Facilities

CADIG

CADIG Website

Solid modeling

Design Lab Facilities

Finite element analysis

Experimental verification

Design Project Highlights

Design Project Highlights

Design Project Highlights

Mechanical Engineering Tracks

- <u>Energy Systems</u>: Focuses on the generation, application, and conversion of various forms of energy.
- Engineering Mechanics: Focuses on the analysis of mechanical motion and the design and behavior of structural materials and components.
- <u>Marine Propulsion</u>: Similar to Energy Systems, but specifically focuses on naval applications and the utilization of energy in the marine environment.
- <u>Materials Engineering</u>: Focuses on the analysis, design, and application of advanced engineering materials.
- Nuclear Engineering: Focuses on the generation and application of nuclear power, particularly naval propulsion.

Mechanical Engineering Electives

Electives

Mechanical Engineering Program Objectives

- To provide midshipmen with a strong educational foundation in the specialties of mechanics, material science, energy science, propulsion and thermal fluid sciences.
- To teach students all levels of design and experimentation which relate to mechanical engineering.
- To prepare students for a broad range of career opportunities in the Navy and Marine Corp as well as for graduate studies at other institutions.
- To provide midshipmen with opportunities to work in teams, solve open-ended problems, develop critical thinking skills, and communicate effectively with others orally and in writing.
- To provide midshipmen with an awareness and understanding of professional, ethical, environmental, and legal responsibilities as an integral part of an engineering education.

For More Information

http://web.usna.navy.mil/~mecheng/

Questions?